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solution of ian ordew linear diiferential equations whose

tems may reculre the

w race

’befameters are eqnetanusw1th1n a given region but change in-
to different constants for adjacent regions. The multiple
regions oi such a system may be identified with discrete in-
tervals and it is a simple matter to obtain the system res-
ponse ?Y, ne method of in*egral equations These solutions
are given in the form of conver"ent infinibe series, the
terms of vhich may be easily evaluated by a digital computer.
The time interval of each region is found by substituting
successive values of these ftruncated series until the requir-
ed boundary conditions arc satisfied. The method is applicd
to a third order type two system whose sustained oscillation,

when subjected to dry friction, is to be eliminated by dead-

zone compensation. The system has four regions witn differ-
ent parametcrs for cach region of the difierential eccuations

which arc converted into Volterra integral cquations of the
Sadeish

second kind The variables are iterated within the @fgital
\

compute ?ﬁuntil a convergent solution is found for the condi-

tion of sustained oscillation. Proccdures arc given to deter-

minc critical valucs of dcaq:zonc for various ramp rates at \
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which the system is stable. Ko7 o R

Introduction

~ SR

In automatic control systems many nonlinearities are
actually piece-wise linear, or can be approximated as such.
It is the purpose of this paper to analyze systems of this
type by the solution of thelr corresponding integral equa-
tions. The method becomes particularly advantageous through
the use of digital computers.

Piece-wise Linear Elements

A piece-wise linear element is shown in Figure 1 where
qj, the output of the j th element, is a line=ar function of

aen input cj within each of I different intervals. If

cJ,i-l'“’cj-“'cj,i’ then
. = N.{c.) = k, ., +C. i =1,2,"°" . 1
1 = Nyleg) =Xy 5 + 5,50 e T 1)
where 71 17 kj y = constant gain and offset respectively,
J s 3

cj 1.1 = starting point of 1 th interval,

cj g = end point of 1 th 1nterval}.
J = index for a particular piece-wise linear
element,
and i = index for a particular linear piece of

the element.
It is seen that this representation is inadequate if the
nonlinearity results from, for instance, hysteresis given in
the example. However this does not affect the generality of

the concept.




The Piecc-wise Lincar Systoem

Consider a picece-~wisce linear system as shown in Figure

2. Thc picce-wisce lincar clements present arc denoted by

N‘j and Uj (j = O,l,"',J) and thec lincar clements are de-
notcd by the operators Gj(p) and Hj(p) where p =-§%. The

generality of the concept is maintained herce also, although

for clarity no clements have been inscrted between ej and

3410
From Figurc 2 the following formulac can be obtained:
-1
mJ = Gg )(p)CJg (Qa)
J
mJ =r - jéQ Hj(p)qj B) (Qb)
¢y =6G(p)my, (3 =0,1,000,7). (3)

The pilecc-wisce lincar clements Uj havce similar chara-
cteristics to Nj' Thercefore,

M +I c i=1,2,""°I,

5= Ugpa(esin) = Koy gtT50 18540
jJ=0,1,---3-1.(4)

By combining cquations (1) - (4) onc obtains

(-1) -3
(o} 7/ (p)H (p)yy 4oy = r-;20H,(p)ky 4

- ; H. (J)YJ ; G (p)rj+1 i J+1 (5)

¢y = Kypq 41y 3 =0,1,--.3. (6)

i -



Equation (6) 1is a recursion relation from which ¢ may be

J+1
reduced to a function of Cyo thus equation (6) becomes

1 1
cj'i‘l = - Pg‘}'l)i 3-]—1 i u-z-l[v—u \(7 )(p)][vtrurs i)]Ku,i
+ [ G( l)(p) F( 1) ;3 =0,1,000, 3-1. (7)

V—O v, 1
If j = J-1 in equation (7), then cy can be obtained in

terms of ot Substituting equation (7) for s and cj+l in

equation (5) a linear differential equation with c, as the

dependent variable can be written in the following form:

N-1 N-n-1

+...+Anp - +...+AN_2p+AN_l]CO = fo(t) . (8)

where the coefficients An are functions of Vj i’rg i and

the parameters in Gj(p) and Hj(p), while the forcing function

N
[p"+A D

fo(t) also depcnds on the above parameters, as wcll as kj 57
2
iji’ and the input r.

It can be shown that the gencral form of ecquation (38)

will be

[pN+AOpN—1+"'+AnpN-n—l+---+AN_2p+AN_1]cj = fj(t). (9)
where j =0, 1. 2,**°, J.

Equations (8) and (9) arc lincar differential cquations
with constant cocfficlents 2nd as such can be solved by
standard methods. Howcver, for every change in any parameter
it bceomes necessary to find new roots of the cquations, and
to determine the n arbitrary constants by solving the n x n-

matrixz of the nth order cquation. This often is not con-

venicent cspeeilally 1f the cquation is of higher order To



eliminate the step of finding the roots, the equations are
changed to integral equations and solved as such by an
iteration procedure.

Solution of Volterra Integral Equation

Equation (9) may be transformed into a Volterra Equa-

%
tion(l) of the second kind as follows

cj(t) = - gtK(t-k)cj(k)dh + FJ(t) (10)
vhere cj(t) 1s the dependent variable,
X(t-A) 1s the kernel of the integral ccuation,
and Fj(t) is the forcing function.

It can be proved that the kernel of equation (8) is

t-p)1
K(t-2) = A +A1(t INERE A1 519 ,

and the forcing function is

-1
(6 = £ HE e+ F o) £

where the cgg) are initial conditions. Let the solutlion of

(]
the integral equation be of the form(‘)

t
c.(t) =F.(t) + [ L(t-NF.(n)ax, (11)
J J A=0 J
then from equation (1), L(t-2) is of the form
L(t-2\) = B, + By tz:‘ +ee+ B ke 7‘ I (12)

From Appendix A the equation which determines the coef-

ficlents Bm is

* See references at the end of the paper.



% 5 Le=20 (£=0)  ® % (=) PHmHl
méo B ~mr nZO AT — + nZO mZ0 BnBr (1)1 0.
(13)

If the paramcters An are given in equation (9), the para-
meters Bm are found by sctting the coefficicnts of cecqual

powers of (t-A) to zero. Thus L(t-A) is known and ¢, is ob-

J
tained from cquation (11). It can be proved that L(t-A) is
a convergent infinite scrics.

Computer Proccdurc

Although the kernel K(t-A) is the same for all j within a
particular time interval yct Fj(t) depends on a particular j
and its initial condition. Equations (11) - (13) give the
solutions cj(t),(j = 0, 1,:++J) sincc the kerncl K(t-A) and
the foreing function Fj(t) are known for cach intcrval
cj,i-lfécﬂjficj,i in PFigurc 1. The computation starts with
a trial valuc of the upper limit t = t; of the integral in
cquation (11). PFor this particular time interval t; the
computed value of cj(tl) should be within the allowable
picce-wisc lincar range, i.c.

ey 51 gjcj(tl) Leg 4, 3=0,1,2,000, J. (14)

The time interval is inercased until the open interval

in cquation (14) ccases to hold for any j, (j=0,1---J). Then

a time interval to should bc found such that cither cj(ta)

!R

Cyq 1 at its lower bound or cj(tg)Eﬁ c5.1 at its upper
bound. Thc cnd conditions at t = tz should bc computed so

that a ncw forecing function Fj(t) and a ncw kerncl K(t-2)



can be obtained. The computation procedurc may be repeated
until certain desired sclutions are found.

Third Order Picce-wise Linear System

An example is glven here for the casc of a third order
piece-wise llnear system to be compensated by a decad-zone
before the integrator as shown in Figure 3.

With an integrator in a third order type two system, it
has been found that sustained oscillation occurs when the
system is subjected to dry friction and zero input.(3) In
order to climinate this oscillation, it is thcn necessary
to change from a third ordecr to a sccond order system by
introducing a dcad—zone.(u) As the output W remains con-
stant whenever the crror ¢ falls within the region -+ ¢ i,
sustained oscillation can be eliminated by adcquatce damping
in a sccond ordcr system.

Let the gain K be unity and the input r» be at. From

the block diagram wc have

€=09- f(c) = -%, (16)
and q=q - & . (17)

In the region of motion the friction, cxpressced as f(&), 1s
actually independent of the velocity € and assumes a con-
stant valuc f(&) = B as shouwn in Figure 4. Combining all
the abovc cquations, the system with kinctic friction be-

comes




e + (KV¥Td)é +e=-HKc +p, foré#a (18)
The error, e, is used as the dependent variable here in-
stead of the output ¢, to facilitate computation.
At the point of Ilmpending motion @, e, and W have the
values:
Q=pg,e=e, and W =W, (19)
By substituting the above values into equation (15) (with
¢ = 0) one obtains,
Wy =Py - Tgd, - e, - (20)
From Figure 3 it is observed that the expression for W
in equation (18) will depend upon the value of e as compared
to 1. A sketch of the dead-zone and integrator output 1is
given in TFigure 5. From equation (18) and Figure 5 the follow-
ing equation applies to the interval O<1t<itx,

t
" ! . . ,
g + (KV+Td)é +e =~ T; £ (e-31)dt W, + Ko+ B (21)

for e>" and é ¥ a,
For the interval t”4:t<;ty, the error is within the dead-zone
and one obtains

& +(Kv+Td)é te=-W ~-W +Ku+p. (22)

~r
F3s

for|ej<", and & = «,

~r

where W, = %L [ = (e=-w)at . (23)
X io

For the interval ty<:t<;tf, the integrator starts function-

irg again and equation (13) becomes



t

3 = -1 o -

€+ (KATy)é + e = - T £ (c+n)dt wtx
v (24)

for e< -1 and ¢ # a.

- wo + Kva + B,

The series solution for a third order system by the method
of integral equations is given in Appendix B. In Appendix
C both thc kernel and forcing function of the integral equa-
tion corresponding to this third order piece-wise linear
system as given by equations (21) - (24) are determined.
Determination of boundary conditions during the period of
static friction is illustrated in Appendix D.

Method of Computation

The following parametcrs provide an cxample for deter-
mining critical values of the dead-zone at which the system

would be stable. The coefficicent KV+T is set at 2.0, which

d
1s the critical value of damping for a second order system.
The integration constant Ti is set at 2.5.

Computation of the infinite serles obtained from the
solutions of equations (21) through (24) is accomplished with
the ald of an I.B.M. 650 computer. With an arbitrary value
of the initial error ey values are assigned to the ramp
rate o and the dead-zonc setting M so that the system will
oscillate. In order to satisfy the condition of e= 1, a
suitable time interval At is chosen and all the valucs of
¢, &, e and wt are computced at the end of the first regilon.

X
If ¢ is not greater 91 then the time interval is doubled and



all of thc above valucs arc recalculated. This proccdure
continucs until ¢ is grecater than 1 at some time, m At;

then the time interval is decreased to (m-1)At. Here, a
fraction of At 1s added to (m-1)At and the computation con-
tinues as before until a time is found at which e = M. With
the final values of the second region as the initial values
for the third region, the computations for the third region
terminates when the error rate, etf, is identical to the
ramp rate, a, at which point the output of the system enters
the regilon of no motion (stiction).

Because the parameters are assigned such that sustalned
oscillation will result, the acceleration at ¢ = tf will have
a value other than zero. However, since the system has come
to rest, the acceleration jumps to zero at this point and a
discontinuity results. At this point equation (D7) is used
to compute the value of ez in Figure 6. If ep # e, then the
cycle is rcpeated with a new initial error, ez, until the
error after n cycles bccomes e, = e2(n—1)' When the steady-
state has been rcached, the acceleration, étf, is compared
to zero. If the acceleration étf# 0, then the dead-zone,

W, 1s gradually increased until finally the values of étf= 0,
étf = a and sy = e?(n—l) are found. The decad-zone setting,
‘1, which produces thesc values of acceleration, e¢rror rate

and crror is the critical setting, ncr’ for the particular

ramp rate; beyond which no sustalned oseillation is possible.



Figurc 7 gives the plot of 6tf/6 vs. 1/6. The critical
points for "101,/6 are the values of %/6 when 'e'tf/a = 0. The
truncation of the infinite series for the purposc of compu-
tation occurs whenever a term in the series is found to be
zero for ten digits in the accumulator of the computer. The
smallcr the dead-zone the less the number of terms required.
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APPENDIX A

Solution of Integral Equation by Iteratcd Kernels

It can be shown that the series of iterated kernels(z)
in equation (11) is
ey n
L(t-2) = 2, (-1)7K (t-7), (A1)

where the iterated kernel 1is defined as follows:
Ky (t-2) = K(t-2)

A=t
and K (t A1) = f N K(t-x)Kn_l(x-xn_l)dx, n=2,3,***.(A2)
n-1
Zubstituting equation (A2) into equation (Al) gives

)\1=t
L(t-2) + K(t-A) = - [ K(t=-A )L(A1-A)dny . (A3)
7\1=7\
The kernel of equation (10) can be expanded in an infinite

series of the form

n
K(t-2) = A + A ﬁ§§$1 + -—= + A 13%$l— + eee L (A4)

Substitution of Equations (12) and (A4) into (A3) yields

o9 t-A)" (t- )
m§0 Bm m! + n— A : (A5)
M=t oa n
t-A
where ¢ = { 20 n-i———%l— 20 m'L*L"Tl‘ . (A6)
1=A

The integral in Equation (A6) may be expressed in terms of

Beta and Gamma functions. The result is equation (13).



APPENDIX B

Series Solution for a Third Order System

If the order of the original differential equation is
not higher than three then the kernel in equation (A4) can
be chosen so that 1t has parametecrs Ao, A; and Ap which are
nonzero quantities and

Ay = Mg = Ag = -====A =0 . (B1)
By expanding the terms in equation (13), and equating the
coefficients of like powers of (t-A) to zero one obtains
A, + B, = c ,
A; + B; + AB, =0 ,
Az + B + AoBl + AlBO =0 ,

B, + A B, ; + MB__

oBr-1 + A2B 5 = 0, m= 3,4... (B2)

2
Equations (B2) can be solved recursively for B
It remains to be shown that the solution in equation
(11) is an infinite series if F(t) is chosen to contain
finite powcrs of t such as
F(t) = b, + bat + b2 -@; . (B3)
Substitution of equations (12) and (B3) into (11)
yields
&(t) = b, + b1t + b2 13;- + gt :150 B 1—’9-;1-7,1)-12 (bo+b17\+b2 %f-)d)
(B4)
Interchanging summation and integral signs, and integrating
the terms in equation (B4) by parts, the following infinite

series results:



tm+l

&(t) = l1 + mZO B TrFI)T

m+2

oo £+3
+ alt + 2o By oyl + bolE * n2o By Tyl (B5)
Integrating and collecting like powers of t, the solution
for e(t) becomes,
- t
e(t) = e, + Dbt +(boBo+b1) 5T

m+2
+ em———— + (bOBm+b1B 1+b2B, o) W'ET' ----- . (B6)

m=l, 2,°°** .
APPENDIX C

Determination of Kernel and Foreing Function

Solving for & from equation (21), integrating term by
t

term, and substituting e = e, + f édt, one obtains

£t t t
= - f (K AT )edt - f f atdt - - [ [ J édsdtde
o o0 io o o
X t
- ‘T"£ £ (e -m)atat + (-W +Katp-e )t + & . (c1)

The double and triple integrals can be changed to a single
integral.(l) Equation (10) has the kernel
1
K(t-2) = (K#+Ty) + (t-2) + oT; (t-2)2 ,» (c2)
and the forcing function,

F(t) = e, + (-WO+K€a+B-eO)t - 5%; (eo-ﬂ)ta . (03)

Comparing equation (C2) to equation (Al), the parametcrs

become

Ay = 1, and Lipg = _T];- . (CLL)
i

Comparing equation (C3) to cquation (B3), onc obtains

AO = KV + Td’



1 .
b, =¢&,, b1 = (-W0+Kva+ﬁ-eo), and bp = --TI (eo- 7). (C5)
The solution of equation (22) is obtained in the same

manner as that of equation (21). Similar analysis leads to

| Ay, =K, +Ty, AL =1, A2 =0, (c6)
as paramctcers of the kernal, and
b, = étx, by = (-wtx-wo+Kva+s-etx), bz = 0, (cT)

as paramcters of the foreing function.
For the interval ty<:t<itf, the varlable of integra-

tion in equation (24) is changed to

- To=t -ty (c8)
Substituting e = [ &dt + e where e, = - M, it is found
that the kernel rgmains the same as inyequation (c2). How-
ever, the parameters of the forcing function become
b, = éty, by = -W_ - W, + Ko+ + 1, and bz = O. (c9)

APPENDIX D
Boundary Conditions During Period of Static Friction

In order to determine the lnitlial error for the next
cycle it is necessary to find the torque while the output is

at rest. From Figure 5 and cquation (15) one obtains

&t/ (et 14T + 7 J (e= 2)dT + e + W o,
io0 iTs f
for ¢ = 0 and hence & = a. The term wt is the initial
by
value of W at T=0. Let the valuc of € at T=0 be Et which
f

can be computed by thc method of integral equations. From

Q=T (D1)

cquation (16) we have



Q=B+'c’tf . (D2)

The chargce on the integrator is determined by cquations
(D1) and (D2) as

W, =p+%¢ -Ta-c . (D3)
te te d te

Figurc 5 shows that the crror ¢ is a lincar function of time
T, thus

e =c  +al . (D4)

f
Substituting cquations (D2) (D4) into equation (D1), in-
tegrating, and setting the torque Q to B+6 at thc point of
impcending motion (when T = Ts), the acceleration Bt be-~
ki)

comes

2
-, = -5 + aTs + [(c, + )Ty +a El]
t Ti tf 2

+'%§'[(etf' 1) (Te-T2) + 5(T8-T3)] . (D5)

From cquation (D5) and the following rclations obtained from
Figure 5,

+ aTa, (D6)

-1 = ¢ +aTy, M1 =¢ + aTp, ez =cC
te te

it can be shown that

Lo

-&

_ o
g, =0 - °t ;BTG (2¢y

f f

4 2 IR 1

]+th)+(1 -T-;a')\,g +§T;a-02
(D7)

The initial error, cz, for thce next cycle of motion can be

computed when € and ¢ are known in cquation (D7). Under
t t

f f
conditions of sustained oscillation, the error ez is cqual

to the crror C, in Figure 5.
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FIG. 4. FRICTION CHARACTERISTICS



FIG. 5. DEAD-ZONE ERROR AND
"~ INTEGRATOR OQUTPUT RESPONSE



FIG. 7. FINAL ERROR ACC. VS. DEAD-ZONE FOR A

THIRD ORDER SYSTEM WITH KetTg=2 & T;=25
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